🏎️ F1 Neural Network Predictor - Live F1DB System
Advanced Formula 1 driver position prediction using deep learning neural networks powered by live F1DB data updated after every race weekend.
🔥 Live Data Integration
✅ F1DB Database: https://github.com/f1db/f1db
✅ Real-time Updates: Data refreshed after every race weekend
✅ Authentic Data: 75+ years of genuine F1 history (1950-2025)
✅ Current Season: 2025 data through Hungarian Grand Prix
🏁 2025 Race Predictions
🏆 Predicted Podium (F1DB v2025.14.0)
- 🥇 Alexander Albon (Williams)
- 🥈 Andrea Kimi Antonelli (Mercedes)
- 🥉 Carlos Sainz (Williams)
- Training Data: 8,195 authentic race results (2000-2025)
- Mean Absolute Error: 4.50 positions
- Within 5 positions: 62.0% accuracy
- Neural Network: 320,001 parameters
🚀 Quick Start
Run F1DB System
# Install dependencies
pip3 install --break-system-packages -r requirements.txt
# Run the complete F1DB system
python3 run_f1db_system.py
# Or run neural network directly
python3 f1db_neural_predictor.py
Web Application
# Start local web app
python3 run_web_demo.py
# Visit: http://localhost:8000
# Deploy to GitHub Pages
git add . && git commit -m "F1DB live system" && git push
# Visit: https://ihackmer19.github.io/Formula-1-Predictor
🧠 Neural Network Architecture
Enhanced F1DB Model
- Input: 37 F1DB-specific features
- Architecture: 6-layer deep network (256→512→256→128→64→32→1)
- Regularization: Dropout + Batch Normalization
- Optimizer: Adam with Huber loss (robust to outliers)
- Parameters: 320,001 trainable parameters
F1DB Features
- Historical Performance: Rolling averages (3, 5, 10 races)
- Career Statistics: Wins, podiums, points, race count
- Circuit-Specific: Track performance history
- Constructor Metrics: Team performance indicators
- Era Features: Current regulations, turbo-hybrid era
- Circuit Data: Length, turns, type characteristics
- Form Indicators: Recent performance trends
📊 F1DB Data Overview
Dataset Scale
- Years: 1950 - 2025 (76 years)
- Races: 1,149 Grand Prix events
- Results: 27,091 race results
- Drivers: 912 F1 drivers in history
- Constructors: 185 teams/constructors
- Circuits: 77 F1 circuits
Current Season (2025)
- Races Completed: 24 (through Hungarian GP)
- Active Drivers: 27 drivers in recent data
- Active Teams: 11 constructors
- Latest Update: Hungarian Grand Prix 2025
🔄 Automatic Updates
F1DB Auto-Updater
# Manual update check
python3 f1db_auto_updater.py
# Continuous monitoring
python3 f1db_update_service.py
Update Schedule
- 📅 Monday 09:00: Post-race weekend updates
- 📅 Daily 12:00: Missed update checks
- 🔄 Automatic: Download, retrain, deploy
Update Process
- Monitor: Check F1DB GitHub releases
- Download: Latest CSV data automatically
- Retrain: Neural network with new data
- Deploy: Update web app predictions
- Log: Track all update attempts
🌐 Web Application
Live Features
- 🔥 F1DB Integration: Real-time data loading
- 📊 Interactive Charts: Team and driver analysis
- 📱 Mobile Optimized: Responsive design
- 🏁 Live Predictions: Updated after each race
GitHub Pages Deployment
# Enable GitHub Pages in repository settings
# Source: Deploy from 'docs' folder
# URL: https://ihackmer19.github.io/Formula-1-Predictor
📁 Project Structure
├── 🔥 F1DB CORE SYSTEM
│ ├── f1db_neural_predictor.py # Main F1DB neural network
│ ├── f1db_auto_updater.py # Automatic update system
│ ├── run_f1db_system.py # System interface
│ └── f1db_version.txt # Current F1DB version
│
├── 📊 LIVE F1DB DATA
│ ├── f1db-races.csv # Race information
│ ├── f1db-races-race-results.csv # Race results (27K+ results)
│ ├── f1db-drivers.csv # Driver database (912 drivers)
│ ├── f1db-constructors.csv # Constructor data (185 teams)
│ └── f1db-*.csv # Additional F1DB datasets
│
├── 🏁 PREDICTIONS & MODELS
│ ├── f1db_2025_predictions.csv # Latest 2025 predictions
│ ├── f1db_best_model.h5 # Trained neural network
│ ├── f1db_model_evaluation.png # Performance analysis
│ └── f1db_update_log.json # Update history
│
├── 🌐 WEB APPLICATION
│ └── docs/ # GitHub Pages app
│ ├── index.html # F1DB-integrated interface
│ ├── data/f1db_predictions.* # Live prediction data
│ └── js/app.js # F1DB data loading
│
└── 📖 DOCUMENTATION
├── F1DB_LIVE_SYSTEM.md # F1DB integration guide
├── README.md # This file
└── requirements.txt # Dependencies
🎯 Key Features
🔥 Live Data
- Real F1 Database: Authentic data from 1950-2025
- Race Weekend Updates: New data after every Sunday race
- No Synthetic Data: 100% authentic F1 information
- Complete History: 75+ years of Formula 1 evolution
🧠 Advanced AI
- Deep Neural Network: 6-layer architecture
- F1-Specific Features: 37 racing-focused inputs
- Temporal Modeling: Historical performance analysis
- Robust Training: Handles real-world F1 variability
🌐 Professional Web App
- GitHub Pages Ready: Instant deployment
- Live Data Integration: F1DB predictions in real-time
- Mobile Responsive: Perfect on all devices
- Interactive Charts: Team and driver analysis
🔄 Automated System
- Auto-Updates: Monitors F1DB for new releases
- Smart Retraining: Updates model with latest data
- Web Integration: Automatically updates predictions
- Error Handling: Robust failure recovery
🎮 Usage Examples
Basic Prediction
# Run F1DB neural network
python3 f1db_neural_predictor.py
# View predictions
cat f1db_2025_predictions.csv
Web Interface
# Start web app locally
python3 run_web_demo.py
# Deploy to GitHub Pages
git push origin main
System Management
# Interactive system interface
python3 run_f1db_system.py
# Check for F1DB updates
python3 f1db_auto_updater.py
# Start monitoring service
python3 f1db_update_service.py
🏆 Advantages Over Static Data
🔥 F1DB vs Static Datasets
| Feature | F1DB Live | Static Kaggle |
|———|———–|—————|
| Updates | After every race | Fixed (2020) |
| Current Data | 2025 season | Outdated |
| Accuracy | High (real patterns) | Limited |
| Relevance | Current drivers/teams | Historical only |
| Maintenance | Community supported | Unmaintained |
🎯 Real-World Benefits
- Current Grid: Actual 2025 F1 drivers and teams
- Recent Form: Latest performance data included
- Rule Changes: Accounts for current F1 regulations
- Team Evolution: Real constructor changes and mergers
- Driver Transfers: Actual 2025 driver lineup
🔧 Technical Requirements
Python Dependencies
pip3 install pandas numpy scikit-learn tensorflow matplotlib seaborn requests schedule
System Requirements
- Python: 3.8+ (tested with 3.13)
- Memory: 4GB+ RAM for neural network training
- Storage: 100MB for F1DB data files
- Network: Internet connection for F1DB updates
🌟 Future Enhancements
Planned Features
- Live Timing Integration: Real-time race data
- Weather Data: Track conditions and forecasts
- Strategy Analysis: Pit stop and tire strategy factors
- Ensemble Models: Multiple prediction algorithms
- Feature Requests: GitHub issues welcome
- Data Improvements: F1DB community contributions
- Model Enhancements: Neural network optimizations
- Web App Features: UI/UX improvements
Resources
- F1DB Database: https://github.com/f1db/f1db
- Project Repository: https://github.com/IHackmer19/Formula-1-Predictor
- Live Web App: https://ihackmer19.github.io/Formula-1-Predictor
- Documentation: F1DB_LIVE_SYSTEM.md
Getting Help
- GitHub Issues: Report bugs or request features
- F1DB Community: Join F1 data discussions
- Documentation: Comprehensive guides provided
🏁 Ready for 2025 F1 Season!
🔥 Your F1 Neural Network Predictor now uses live, authentic Formula 1 data!
- ✅ Real Data: F1DB live database integration
- ✅ Auto-Updates: Monitors race weekend updates
- ✅ Web Ready: Professional GitHub Pages deployment
- ✅ Production Quality: 320K parameter neural network
🏎️ Experience the future of Formula 1 predictions with live data! 🏆